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Abstract. As Nepal is at high risk of earthquakes, the district-wide (VDC/Municipality level) study has been performed for 5 

vulnerability assessment of seismic-hazard, and the hazard-risk study is incorporated with social conditions as it has become 

a crucial issue in recent years. There is an interrelationship between hazards, physical risk, and the social characteristics of 

populations which are significant for policy-makers and individuals. Mapping the spatial variability of average annual loss 

(seismic risk) and social vulnerability discretely does not reflect the true nature of parameters contributing to the earthquake 

risk, so when the integrated risk is mapped, such combined spatial distribution becomes more evident. The purpose of this 10 

paper is to compute the risk analysis from exposure model of the country using OpenQuake and then integrate the results with 

socio-economic parameters. The methodology of seismic-risk assessment and the way of combining the results of the physical 

risk and socio-economic data to develop integrated vulnerability score of the regions has been described. This study considers 

all 75 districts and corresponding VDC/Municipalities using the available census. The combined vulnerability score has been 

developed and presented by integrating earthquake risk and social vulnerability aspect of the country and represented in form 15 

of map produced using ArcGIS 10. The knowledge and information of the relationship between earthquake hazard and the 

demographic characteristics of population in the vulnerable area is imperative to mitigate the local impact from earthquakes. 

Therefore, we utilize social vulnerability study as part of a comprehensive risk management framework to recuperate and 

recover from natural disasters.  

 20 
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1 Introduction 

Nepal is one of the seismically active regions in the world with a long record of destructive earthquakes (Chaulagain et al., 

2016). This is due to the intrinsic geological features with high exposure to earthquakes causing potential severe consequences. 25 

Most devastating earthquakes were reported in 1255, 1408, 1681, 1803, 1810, 1833, 1934, 1988, and 2015 (Pandey et al., 

1999). From 2000 to 2015, 192 earthquakes greater than magnitude 5, 14 earthquakes greater than magnitude 6, and 1 

earthquake greater than magnitude 7.5 took place in Nepal. Among these earthquakes, the most recent one in 2015 killed 8948 

people, destroyed world heritage sites, and caused estimated damage of 10 billion dollars with the moment magnitude of Mw 

7.8 (Mori et al., 2020). Around the globe, the impact of the seismic hazard has escalated due to increased population density, 30 
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unmanaged urbanization, and other socio-economic parameters (Pachauri et al., 2014). Table 1 shows the number of deaths 

caused by the earthquake and poor hazard management in Nepal. The destruction or disaster is the combination of exposure 

to natural hazards and conditions of vulnerability characterized by the place and the inability to mitigate the negative 

repercussions (UNISDR, 2009). Although natural hazards are not escapable, hazard mitigation, vulnerability assessment, and 

their integration can significantly reduce the negative effect and aid in recovery (Frigerio et al., 2016).  35 

Vulnerability is the key element and prerequisite of mitigating disaster, facilitating hazard resilient community (Guo and 

Kapucu, 2020). The core elements of vulnerability include resilience, exposure, and sensitivity (Cutter et al., 2003). The 

biophysical and natural components and the built-in environment under vulnerability have been meticulously examined; 

however, the social aspects of the vulnerability are highly undermined (Mileti, 1999). As a result, the loss estimation reports 

are usually unable to reflect social losses. It is imperative to include social vulnerability while assessing the natural hazards 40 

and their losses. According to Cutter et al. (2003), social vulnerability can be evaluated using the social vulnerability index 

(SoVI). For each country, SoVI is the corresponding measure of overall social vulnerability. Assessment of vulnerability and 

its mitigation necessitates the understanding of various factors like social, economic, and political contexts (Hewitt, 2007). 

SoVI analysis uses an all-inclusive framework where each factor is viewed to play an equal contribution to the country’s 

vulnerability (Cutter et al., 2003). This concept has been applied under geographical and social contexts around the world such 45 

as the US (South Carolina) (Schmidtlein et al., 2011), Iran (Alizadeh et al., 2018), Bangladesh (Rahman et al., 2015).  

To diminish the losses from natural and man-made hazards, individuals and policymakers need to be responsible for losses 

caused by disasters, reduce future risks, and finally make endeavours towards sustainable development accompanied by a 

resilient community. The knowledge transfer between individuals and policymakers is very constrained as hazard and risk 

assessment put limited focus on social components (Borden et al., 2007). In Nepal, the quantitative assessments of social 50 

vulnerability associated with seismic hazard are less owing to the lack of social data and seismic hazard mapping. Many studies 

in past are focused on geographical/physical vulnerability assessment of hazards like a flood (Dixit, 2003), landslides (Malakar, 

2014), and extreme weather events (Shrestha, 2005). The study by Mainali and Pricope (2019) and (Aksha et al., 2019) 

incorporate vulnerability with climatic conditions and natural hazards in Nepal respectively with a wide range of socio-

economic factors. However, such studies in Nepal do not include intricate analyses of social vulnerability assessment to 55 

earthquakes. Similarly, the extent of disaster caused by earthquakes depends on one place to another based on the local 

vulnerability factors such as socio-economic and cultural aspects. For example, the 2015 Gorkha Earthquake damaged more 

than 700,000 buildings, majority of which took place in underdeveloped rural areas with predominant traditional and low-

quality masonry houses (Ulak, 2015). In this regard, risk assessment with proper forecasting measures plays prominent role in 

determining the areas vulnerable to seismic hazards and reducing the damage in the future. This signifies the need to 60 

incorporate the seismic risk assessment with social characteristics. In this study, the country-level earthquake risk estimates 

from the Global Earthquake Model OpenQuake, are analysed and integrated with vulnerability parameters (social and 

economic factors) in the districts of Nepal.  
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Studying social vulnerability identifies the sensitive areas and populations that are prone to high risk and are less likely to 

acclimatize and recover from a natural catastrophe. This study focuses on social vulnerability and explores the physical risk 65 

from earthquakes at the village and municipal levels. In this paper, we assessed the seismic impact potential by moving beyond 

the physical (direct) impact by integrating physical risk (economic loss) with measures of social vulnerability (features that 

create the potential for loss or harm). The main objective is to expand on the information and knowledge of features that are 

more socially vulnerable to seismic losses so that policymakers and individuals can carry out a sustainable procedure to reduce 

the effect in the country. To the author’s best knowledge, no previous studies have been documented regarding integrating 70 

social vulnerability (preparation of society to any disaster) and seismic risk for Nepal.  
Table 1: Deaths caused by Earthquakes in Nepal. 

Year Magnitude Death 
1255 7.8 2,200 
1934 8.0 11,000 
1966 6.3 80 
1980 6.5 200 
1988 6.9 1,091 
2011 6.9 111 
2015 7.8 8,857 

2 Theory and background 

2.1 Social Vulnerability Variables 

As vulnerability is a multidimensional aspect, it cannot be integrated into a single variable (Cutter and Finch, 2008). The 75 

impact of natural hazards is based on social parameters such as socioeconomic status, geographical features, ethnicity 

(minority), renter, gender, and age. These intensify the impact of earthquakes; for instance, some people have the privilege to 

social advantages while some succumb to poverty and discrimination. The households with better economic status can 

recuperate from disasters better than low-income houses (Mileti, 1999). There have always been stories of high-class predation 

and low-class vulnerability. At the same time, the oppressed groups are not involved in the policy-making procedure due to 80 

the inequality prevalent in society. People are obliged to work overseas especially in gulf countries for employment 

opportunities due to poverty (Aksha et al., 2019). Similarly, ethnicity creates barriers in distribution and access to financial 

resources after disasters (Cutter et al., 2003). A significant number of minorities, females, and depending on age groups are 

more vulnerable (Borden et al., 2007). Moreover, another group of vulnerable populations is the renters because, in comparison 

to the homeowners, renters are financially unprepared for the recovery (Burby et al., 2003). According to the census of 2011, 85 

the population of Nepal is booming at more than 2% per annum. The topography of Nepal creates a barrier to distributing relief 

materials to the affected regions in time which exacerbates the impact of natural hazards. For example, in the Northern part of 

the country, especially in the far-western region most of the communities are not privileged with basic needs.  
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2.2 Earthquake risk assessment and OpenQuake 

According to Stevens, et al. (2018), the probability of exceeding the shaking of 0.4g-0.6g is 10% and that of 1.0g-3.0g is 2% 90 

in the 50-year period. The seismicity in Nepal varies with the seismic source distribution with high risk in southern Nepal and 

is evenly distributed across the west-northwest–east-northeast direction. Such hazards could be devastating in a densely 

populated area. In this study, the physical risk assessment is evaluated using the OpenQuake platform. OpenQuake is a Python-

based module that is used to model earthquake ruptures and calculate hazard and risk results by providing ground motion 

fields. The risk module of the platform where is the convolution of three parameters: hazard, seismic vulnerability model, and 95 

exposure data. The risk calculator includes a) classical damage b) classical BCR c) classical risk d) event-based damage e) 

scenario risk d) scenario damage (Pagani et al., 2014). In our research, first, the classical risk results are drawn from 

OpenQuake and these results are integrated with socio-economic models.   

3 Materials and methods 

In this research, an integrated approach for depicting the potential effects of earthquake events has been used. This approach 100 

assesses an event’s potential impact by accounting for the seismic risk and the human dimensions within the hazard zone 

(Burton and Silva, 2016). Measuring risk necessitates multidisciplinary evaluation that takes into account both physical 

damage and social fragility/susceptibility conditions (Carreño et al., 2012). The integrated approach quantifies the direct impact 

of earthquake hazard in terms of physical risk descriptor, social parameters, and sustaining capacity of exposed societies 

(Fernandez et al., 2006).  105 

3.1 Social vulnerability assessment 

Social vulnerability helps to explain the reason behind the difference in consequences in communities, even though they are 

subjected to similar levels of ground shaking (Burton and Silva, 2016). We identified the meaningful variables incorporating 

the socioeconomic and physical context of Nepal. Moreover, to describe the vulnerability at the municipality and VDC level 

in Nepal, we computed a modified SoVI.  110 

3.1.1 Data and SoVI modification 

Social Vulnerability Index (SoVI) method was originally formulated by Cutter et al. (2003), which provides a comparative 

metric depicting an area’s relative social vulnerability to hazard. This concept of social vulnerability has been applied in many 

contexts. For social vulnerability, we extracted data from the most recent national-wise census of Nepal held in 2011 (CBS), 

Nepal Human Development Report 2014 (UNDP). The administrative map at VDC and Municipality level is shown in Figure 115 

1. Table 2 provides the list of all the variables used for social vulnerability assessment. Out of 45 variables, 22 variables are 

district-wise indicators and it is assumed that each sub-section (municipality and VDCs) has a uniform value. Similarly, 7 

variables are a weighted combination of multiple variables as shown in Table 2. This technique of weighing variables is used 
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in PCR analysis exercised in NHDR (2014). NHDR (2014) also used the same weightage values for these variables. Hence, 

with 54 variables used in 7 weighted variables, there are altogether 92 variables considered for the social vulnerability index. 120 

The modification in the original SoVI is required due to the difference in demographic characteristics between Nepal and the 

USA and the availability of data. We have included variables from various categories. For instance, the housing unit status 

category reflects the features of the household, housing characteristics, and facilities. Population characteristics show female 

population characteristics, age structure, population density, population growth, child marriage, and disability population. 

The cardinality of each indicator (variables) is indicated in Table 2. Positive cardinality (+) means variables have a positive 125 

relationship with social vulnerability, while negative cardinality (-) means they have a negative relationship. Each indicator 

should be normalized to obtain a relatively uniform dimension. Hence, based on cardinality, we used a MINMAX method for 

each indicator using Eq. (1) and (2), as exercised in Fang et. al. (2019). 

For positively related indicators (+), 𝑆𝑆𝑖𝑖 = (𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑖𝑖,𝑚𝑚𝑖𝑖𝑚𝑚)/(𝑋𝑋𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑖𝑖,𝑚𝑚𝑖𝑖𝑚𝑚)      (1) 

For negatively related indicators (-), 𝑆𝑆𝑖𝑖 = (𝑋𝑋𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑖𝑖)/(𝑋𝑋𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑖𝑖,𝑚𝑚𝑖𝑖𝑚𝑚)       (2) 130 

Where, Xi is the original value of indicator i; Xi,max and Xi,min are the maximum and minimum values of the variable Xi. Si is 

the standard value of index i, which is in the range of 0 and 1. 

 
Table 2: Variables used to construct social vulnerability index and their loading values after PCA. 

S.N. Description Category Data 
Source 

Cardinality Loadings 

1 Percentage of households that owned a house Housing Unit 
Status 

a - -0.502 

2 Weighted Foundation Index per household ** Housing Unit 
Status 

a - 0.863 

3 Weighted Wall Index per household ** Housing Unit 
Status 

a - 0.872 

4 Weighted Roof Index per household ** Housing Unit 
Status 

a - -0.645 

5 Weighted Drinking Water Index per household ** Housing Unit 
Status 

a - 0.498 

6 Weighted Cooking Index per household ** Housing Unit 
Status 

a - 0.673 

7 Weighted Electricity Index per household ** Housing Unit 
Status 

a - 0.72 

8 Percentage of households without toilet facility Housing Unit 
Status 

a + 0.533 

9 Percentage of households without any of following 
facilities: radio, television, mobile, refrigerator, 
vehicles, internet 

Housing Unit 
Status 

a + 0.653 

10 Percentage of households with radio facilities Housing Unit 
Status 

a - 0.395 

11 Percentage of households with television facilities Housing Unit 
Status 

a - 0.711 
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12 Percentage of households with internet facilities Housing Unit 
Status 

a - 0.614 

13 Percentage of households with vehicles Housing Unit 
Status 

a - -0.51 

14 Percentage of absentee households Housing Unit 
Status 

a + -0.885 

15 Average household size Housing Unit 
Status 

a + 0.511 

16 Percentage of households with child as household 
head * 

Housing Unit 
Status 

a + 0.546 

17 Percentage of households with female as household 
head * 

Housing Unit 
Status 

a + -0.797 

18 Percentage of household with 5+ members * Housing Unit 
Status 

a + 0.666 

19 Housing Density * Housing Unit 
Status 

a + -0.914 

20 Percentage of population that is females Population a + -0.84 
21 Percentage of children under 5 years Population a + 0.748 
22 Percentage of children aged 5 to 14 Population a + 0.705 
23 Percentage of people aged 30 to 49 Population a - 0.712 
24 Percentage of elder population (65+) Population a + -0.483 
25 Percentage of population with disabilities (blind, 

deaf, mental) 
Population a + -0.374 

26 Percentage of child marriages * Population a + 0.745 
27 Population Growth (2001 - 2011) * Population b - -0.846 
28 Net Migration Rate * Population b - -0.85 
29 Population Density * Population a + -0.89 
30 Population per each hospital and PHCC/HCC * Health e + 0.51 
31 Population per each health posts and sub-health post 

* 
Health e + 0.773 

32 Life Expectancy * Health b - 0.776 
33 Infant Mortality Rate (Per 1000 Birth) * Health b + 0.706 
34 Literacy Rate Education a - 0.469 
35 Weighted Education Level Index per capita ** Education a - 0.717 
36 Population per each school * Education g + 0.526 
37 Human Poverty Index * Economy d + 0.803 
38 Human Development Index (2011) * Economy d - 0.878 
39 Budget allocation per capita * Economy f - 0.835 
40 Per capita income, Rs. at 

market price * 
Economy d - 0.751 

41 Percentage of population that are economically 
active * 

Economy d - 0.488 

42 Gross Domestic Product (Value Added) Rs. In 
Million (per Capita) * 

Economy d - 0.739 
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43 Labour Productivity per capita * Economy d - 0.871 
44 Population per each small industry * Economy c + 0.429 
45 Percentage of employment that are female * Economy a - 0.554 

a National Population and Housing Census 2011 (CBS (2012)) 135 
b Population Monologue V01 (CBS (2014a)) 
c Population Monologue V03 (CBS (2014b)) 
d Nepal Human Development Report (Sharma et al., 2014) 
e Department of Health Services (2013) 
f Budget report for year 2070-71 (2013 - 14) 140 
g Department of Education (2013 – 14) 
* District-wise data 
** Weighted index calculated as per Table 3 
 
Table 3: Weights corresponding to the weighted variables, as defined in Table 2. 145 

Variables Weightage 
 

Variables Weightage 

A. Weighted Foundation Index 

Types of foundation in houses 

E. Weighted Cooking Index 

Main cooking fuel 

RCC with pillar 5 LP gas 6 

Cement bonded bricks/stone 4 Electricity 6 

Mud bonded bricks/stone 3 Kerosene 5 

Wooden pillar 2 Bio gas 4 

Others 1 Wood/firewood 3 

Not Stated 1 Santhi/guitha (cow dung) 2 

B. Weighted Wall Index 

Types of walls in houses 

Others 1 

Cement bonded bricks/stone 6 Not Stated 1 

Mud bonded bricks/stone 5 F. Weighted Electricity Index 

Main source of light 

Wood/ planks 4 Electricity 5 

Bamboo 3 Solar 4 

Unbaked brick 2 Bio gas 3 

Others 1 Kerosene 2 

Not Stated 1 Others 1 

C. Weighted Roof Index 

Types of roofs in houses 

Not Stated 1 

RCC 7 G. Weighted Education Index 
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Highest level of education of each individual 

Tile/slate 6 Post Graduate equiv.  and above 9 

Galvanized iron 5 Graduate and equiv. 8 

Wood/planks 4 Intermediate and equiv. 7 

Mud 3 S.L.C. and equiv. 6 

Thatch/straw 2 Secondary (9 -10) 5 

Others 1 Lower secondary (6 -8) 4 

Not Stated 1 Primary (1-5) 3 

D. Weighted Drinking Water Index 

Main source of drinking water 

Beginner 2 

Tap/piped water 7 Others 1 

Covered well/kuwa 6 Non-Formal 1 

Tubewell/handpump 5 Not Stated 1 

Uncovered well/kuwa 4 
 

Spout water 3 

River/stream 2 

Others 1 

Not Stated 1 
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Figure 1: Administrative Map of Nepal showing 3983 VDCs and municipalities, 75 districts, and three geographical regions. 

3.1.2 Principal component analysis 

Social Vulnerability Index is created by synthesizing socio-economic variables through a mathematical procedure called 150 

Principal Component Analysis (PCA). PCA transforms a number of possibly correlated variables into a smaller number of 

uncorrelated components (Abdi and Williams, 2010). The main idea of PCA is to reduce the dimensionality of a dataset with 

a large number of inter-related indicators, whilst retaining the maximum possible variation present in the data set (Jolliffe, 

2002).  

3.1.2.1 Number of Principal Components 155 

It is very crucial to determine the number of components to retain in PCA (Franklin, 1995). We used Parallel Analysis (PA) 

by Horn (1965). Various studies like Humphreys and Montanelli (1975), Zwick and Velicer (1986), and Thompson and Daniel 

(1996)  have shown that PA is an appropriate method to determine the number of factors. These studies assert that this method 
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(PA) is the best available alternative to calculate the number of factors to be retained. Finally, in this method, Eigenvalues 

from PCA prior to rotation are compared with ‘expected’ eigenvalues which are obtained by simulating normal random 160 

samples with identical dimensionality (same number of samples and variables) using a Monte-Carlo simulation process. 

Initially, a factor was considered significant if the associated eigenvalue was bigger than the mean of those obtained from the 

random uncorrelated data. Currently, the default (and recommended) values for a number of random correlation matrices and 

percentile of eigenvalues are 100 and 95 respectively (Cota et al., 1993; Glorfeld, 1995; Velicer et al., 2000). We used a parallel 

analysis engine developed by Vivek et al. (2017) to calculate corresponding random Eigenvalues. From parallel analysis, there 165 

were eight components with larger associated Eigenvalues than one from the Monte-Carlo simulation as shown in Table 4. 

These eight components explained 77.51% of the variance in all variables. 

We also used two rules-of-thumb to calculate the number of components to be retained for comparison. The first one is Kaiser’s 

rule proposed by Kaiser (1960). As per this rule, only those principal components with Eigenvalues greater than 1.0 are 

retained. As seen in Table 4, just like parallel analysis, Kaiser’s rule also indicated eight principal components. The second 170 

one is Cattell’s Scree test ((Cattell, 1966) which is based on the scree-plot (Eigenvalues vs the number of components). 

According to this method, a point where the scree plot moves from steep to shallow is taken as a cutting-off point as shown in 

Figure 2 which also indicates eight principal components similar to parallel analysis. 

 
Table 4: Initial Eigenvalues, variances, and results of Parallel analysis for first ten principal components. 175 

Component Initial 

Eigenvalues 

(a) 

% of 

Variance 

Cumulative 

% 

95% Percentile 

Eigenvalue (Parallel 

Analysis) (b) 

Parallel Analysis: 

Remarks 

1 13.215 29.366 29.366 1.227612 a > b 

2 9.201 20.447 49.813 1.199826 a > b 

3 3.541 7.87 57.683 1.183024 a > b 

4 3.096 6.88 64.563 1.170289 a > b 

5 1.787 3.972 68.535 1.160148 a > b 

6 1.488 3.308 71.842 1.147872 a > b 

7 1.345 2.99 74.832 1.136596 a > b 

8 1.206 2.681 77.513 1.126383 a > b 

9 0.929 2.064 79.577 1.11708 a < b 

10 0.79 1.755 81.332 1.107092  
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Figure 2: Scree plot (Eigen Values Vs Components). 

3.1.2.2 Suitability of data for PCA 

We performed two tests to check the adequacy of data for PCA. The Kaiser-Meyer-Olkin measure of sampling adequacy 180 

(KMO) depicts the proportion of variance in the variables that might be caused by underlying factors (Fekete, 2009; Kaiser, 

1970). KMO-value greater than 0.8 is considered good, while KMO-value less than 0.5 requires some remedy, either by 

deleting or adding variables (IBM Support, 2020). Similarly, Bartlett’s test of sphericity is the suitability test, where the value 

below 0.05 indicates the variables are related and suitable for structure detection. In this study, KMO value of 0.873 and 

Bartlett’s test value of 0.000 passed the requirements of data for PCA. 185 

3.1.2.3 Statistical Analysis 

PCA is carried out in SPSS version 21.0. We employed Varimax rotation with Kaiser normalization as applied by Aksha et al. 

(2019), Fekete (2009) which maximizes the variance shared among data and eases the interpretation by rotating the axes of 

the components perpendicular to them. For the interpretation of the result, we suppressed the absolute loading value less than 

0.30 and considered Eigenvalues greater than 1.0 as in Fekete (2009). Due to the lack of justifiable method and evidence for 190 

weighting components, an equal weighting, and additive approach is considered as exercised in similar studies Cutter et al. 

(2003) and Aksha et al. (2019). The loadings after PCA are presented in Table 2. Thereafter, SoVI scores are calculated by 

summing the scores of all principal components. SoVI scores are generally expressed as standard deviations (z-scores) or 

quintiles to emphasize their relative value (Tate, 2012). In this study, we used z-scores to classify the social vulnerability of 

each VDC and municipalities into five groups and we plotted the results in map form using ArcGIS. 195 
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3.2 Seismic Risk Assessment 

The Classical PSHA-based risk calculator was performed to calculate the annual average loss using OpenQuake. This 

calculator combines numerical integration, physical vulnerability functions of the assets, seismic hazard curve at the location 

to calculate the loss distribution for the asset within a specified time period (Pagani et al., 2014). The calculator requires an 200 

exposure model describing the distribution of building typologies, physical vulnerability functions for each building type, and 

hazard curves calculated in the region of interest. The physical vulnerability function is solely hazard dependent. The hazard 

curves required are also calculated using the OpenQuake engine using the classical PSHA approach. For hazard curves 

derivation, a source model and ground motion prediction were provided. Finally, the value of annual average loss (AAL) for 

each VDCs and municipalities was rescaled into the range between 0 and 1 using MIN-MAX rescaling (Equation 1). 205 

3.2.1 Source model 

Nepal is one of the seismically active zones in the world, the geological formation of Nepal has been well documented in 

several studies (Gehrels et al., 2006; Hodges, 2000; Stevens et al., 2018; Taylor and Yin, 2009; Thapa and Guoxin, 2013; 

Upreti and Le Fort, 1999). For instance, Stevens et al. (2018) used a mix of fault and area source models — in total six seismic 

sources with the Gutenberg a and b values along with maximum magnitude estimated for each source zone. Similarly, Pandey 210 

et al. (2002) divided the whole Nepal region into ten area sources and twenty-four fault sources. Thapa and Guoxin (2013) 

divided the Nepal region into twenty-three seismic source zones. Chaulagain et al. (2016) also used the same sources to carry 

out a seismic risk assessment. In this study, the twenty-three source zones similar to that of Thapa and Guoxin (2013) are 

considered for probabilistic seismic hazard analysis. The seismic source zones are shown in Figure 3. The delineated sources 

are assumed to be homogenous in terms of their seismicity so that every point is assumed to have an equal probability of 215 

occurrence of an earthquake. Thapa and Guoxin (2013) determined ‘b’ value of 0.85 for the entire region. Here, we have also 

considered the same ‘b’ value as proposed in that study.  

Generally, small magnitude earthquakes have a minute effect on engineering structures. Therefore, for the hazard analysis, the 

minimum magnitude within all source zone was considered 4.0. The surface wave of 4.0 can be damaging for engineering 

buildings in Nepal (Thapa and Guoxin, 2013). The devastating great earthquakes in Nepal occurred in 1505, 1934, 2015 with 220 

magnitude Mw of 8.1, 8.4, and 7.8 respectively. The maximum magnitude of each source zone is given in Table 5. Similarly, 

the hypocenter depth of 10 km is used for the entire region.  
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Figure 3: Seismic Source Zones of Nepal (Thapa and Guoxin, 2013). 

Table 5: Seismic history and maximum magnitude of source zones (Chaulagain et al., 2015; Thapa and Guoxin, 2013) 225 

Number Source Zones Historical Events Maximum Magnitude 

1 Z1 No records of strong earthquakes 6.5 

2 Z2 No records of strong earthquakes 6.5 

3 Z3 Magnitude (Mw) 6.2 earthquake 6.5 

4 Z4 No records of strong earthquakes 6.5 

5 Z5 No records of strong earthquakes 6.5 

6 Z6 Magnitude (Mw) 6.3 6.5 

7 Z7 Magnitude (Mw) 6.8 7 

8 Z8 No records of strong earthquakes 6.5 
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9 Z9 

Ms 6.3, Ms 7.0, Ms 6.1 in 1849, 1852, 1980 

respectively 8 

10 Z10 

Ms 6.1 and Ms 6.8 in 1965 and 2011 

respectively 8.5 

11 Z11 

Magnitude Mw 7.6 and Mw 8.2 in 1833 and 

1934 respectively 8.5 

12 Z12 Ms 7.6 in 1255, 1408, 1681, 1810 8 

13 Z13 Moderate earthquakes 7.5 

14 Z14 Mw 7, Mw 6.7 in 1936 and 1954 respectively. 8.5 

15 Z15 Ms 8.1 8.5 

16 Z16 Strong earthquakes 8.5 

17 Z17 Strong earthquakes 8.5 

18 Z18 

Ms 6.7, 6, 6, 6.5, 6.3 in 1911, 1935, 1945, 1958 

respectively. 8 

19 Z19 No strong earthquakes 6.5 

20 Z20 Strong earthquake of Ms 6.2 6.5 

21 Z21 Less active 6.5 

22 Z22 Moderate earthquakes 6.5 

23 Z23 Moderate earthquakes 6.5 

 

3.2.2 Attenuation relationship (Selection of ground motion prediction equation) 

Selecting the ground motion prediction equation is one of the important steps in seismic hazard analysis. These equations 

govern the propagation of seismic ground motion from seismic source to site in terms of magnitude, distance, depth, and other 

site parameters (Cornell, 1968).  In the context of Nepal, there are insufficient strong ground motion records to derive a precise 230 

equation capturing the actual response spectrum. On top of that, very few researches have been conducted in terms of 

attenuation relationship in Nepal. Previous studies like Chaulagain et al. (2015) and Stevens et al. (2018) have used 

combination of GMPEs within logic tree.  To this end, we assume the tectonic region as a shallow crust and subduction 

interface like that in Chaulagain et al. (2016). The equations used herein are Atkinson and Boore (2003), Youngs et al. (1997), 

Campbell and Bozorgnia (2008), Chiou and Youngs (2008), and Boore and Atkinson (2008). These equations are used within 235 

a logic tree (equal weights for each equation) to conduct probabilistic seismic hazard and risk analysis in OpenQuake. 
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3.2.3 Exposure model and Physical Vulnerability model 

In this study, the building description and data from Census 2011 are used to develop the exposure model without considering 

the industrial or commercial buildings. The total number of households according to Census 2011 is 5,423,297. Most of the 

regions in Nepal consist of mud-mortar/bonded brick masonry buildings. In remote areas, wooden buildings are abundant 240 

whereas, in the central region especially in Kathmandu and urban areas, cement bonded or reinforced concrete buildings are 

present. We have considered four types of buildings — mud bonded, cement-bonded, reinforced cement concrete (RCC), 

wooden, and adobe. The area and construction cost of each building type is shown in Table 8 as considered by Chaulagain et 

al. (2015). The spatial distribution of total buildings across the country is shown in Figure 4a and the individual building 

typology is summarized in Box and Whisker plot as shown in Figure 4b. The average values of RCC with pillar, Mud-Bonded, 245 

Cement-Bonded, Wooden-pillar, and Adobe are 135.73, 603.36, 239.91, 340, 46.33 respectively as presented in Figure 4 

b. 

On the other hand, the seismicity itself is not responsible for imposing seismic risk in Nepal, the risk is also driven by the 

physical vulnerability of infrastructures (Chaulagain et al., 2016). The average annual loss is evaluated using a vulnerability 

model. The physical vulnerability model is the probabilistic distribution of loss ratio for given intensity measure levels. In this 250 

research, the fragility model developed by Chaulagain et al. (2015) is adopted for different building types thereafter, the 

fragility curve is inputted in the vulnerability modellers toolkit (VMTK) developed by GEM OpenQuake to derive the physical 

vulnerability model. VMTK is a framework divided into six modules from deriving fragility function via non-linear dynamic 

analysis to deriving physical vulnerability model using fragility function and consequence model (Martins et al., 2021). In this 

process, the fractions of buildings in each damage state are multiplied by the associated damage ratio (from the consequence 255 

model), in order to obtain a distribution of loss ratio for each intensity measure type (Pagani et al., 2014). The fragility function 

used in this study is shown in Table 6. The consequence model used for developing the physical vulnerability model is 

presented in Table 7.  
Table 6: Mean and standard deviation per damage state for each building type (Chaulagain et al. 2015). 

Building 

type 

Moderate Damage Extensive Damage Collapse 

μ σ μ Σ μ Σ 

Adobe -3.22 0.65 -1.99 0.77 -1.45 0.64 

Mud 

Bonded 

-2.14 0.72 -1.66 0.72 -1.05 0.66 

Cement 

Bonded 

-1.82 0.68 -1.06 0.67 -0.62 0.72 

Wooden -1.08 0.64 -0.39 0.64 0.00 0.64 

RCC 0.35 0.17 0.85 0.2 1.35 0.32 
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 260 
Table 7 Consequence model to develop physical vulnerability model (Chaulagain et al. 2015). 

Damage Type Damage ratio 

Moderate damage 0.3 

Extensive damage 0.6 

Collapse 1.00 

 

 
Table 8: Area and construction cost of different Building Type (Chaulagain et al. 2015). 

Building Type Area per building (m2) Construction cost (€/m2) 

Adobe 60 150 

Mud Bonded 70 225 

Cement Bonded 80 275 

Wooden 60 200 

RCC 80 325 

 265 

 
Figure 4: a) Spatial distribution of total buildings in Nepal b) Box and Whisker plot describing the distribution of each building 
types 
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3.3 Integrated risk assessment 

 270 
Figure 5: Framework for Integrated Risk Approach (Burton and Silva, 2016) 

The mapping of average annual loss estimates and SoVI are useful, but they do not depict the true nature of the components 

contributing to the earthquake risk at a particular place (Burton and Silva, 2016). The compounding nature of risk becomes 

more evident when visualized in form of an integrated risk map. A total risk index was constructed by combining the social 

vulnerability index and estimates of average annual loss in rescaled metrics. Here, the seismic losses were recomputed by 275 

using the Min-Max rescaling method. The framework or workflow of the integrated risk assessment is shown in Figure 5. The 

first phase of integrated risk involves evaluating seismic hazards using OpenQuake’s hazard toolkit developed by GEM 

Foundation. The seismic hazard analysis requires earthquake ruptures and ground motion fields. The hazard calculation when 

combined with exposure and physical vulnerability using QpenQuake’s risk calculator gives the estimate of physical seismic 

risk in the form of human loss or economic loss. The physical vulnerability and exposure model interacts with the social and 280 

economic parameters or overall capacity of the population to sustain hazards (Burton and Silva, 2016). The total integrated 

risk is the combination of physical risk and a set of contextual and social vulnerability conditions (Carreño et al., 2012). In this 

regard, the paper evaluates the integrated risk grounded on direct factors or physical risk and indirect factors. In this paper, the 

integrated risk index (RT) was calculated using Eq. (3): 

𝑅𝑅𝑇𝑇 = 𝑅𝑅𝑓𝑓 (1 + 𝐹𝐹)              (3) 285 

The Moncho’s equation (Eq (3)) is used to evaluate convoluted risk, where Rf is a physical risk index, in this case, average 

annual loss estimate, and F is a social fragility index or aggravating coefficient (Glorfeld, 1995). This technique and its 

successful application can be found in numerous studies due to its simplicity and successful applications. (Burton and Silva, 

2016; Carreño et al., 2012; Fernandez et al., 2006; Khazai et al., 2013). In order to verify the calculated total risk, the 

OpenQuake integrated risk modelling toolkit was used. The integrated risk modelling toolkit (IRMT) is a plugin developed by 290 
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GEM Foundation and available in QGIS opensource platform that allows to build a composite framework to assess physical 

risk and social characteristics that affect the earthquake risk. The OpenQuake platform present within QGIS was used to 

develop probabilistic seismic risk models. The diagrammatic workflow of social and physical risk indicators developed by 

OpenQuake IMRT is shown in Figure 6. The integrated toolkit involves intricate details — selection of indicators to the 

detailing and mapping of composite risk assessment.  295 

 

Figure 6: Workflow showing social and physical risk indicators in QGIS IRMT. 

4 Results and discussion 

4.1 Social vulnerability index (SoVI) 

Based on z-scores, the total SoVI scores are classified into five quintiles from very low (< -1.5 standard deviation) to very high 300 

(> 1.5 standard deviations) vulnerability. Figure 7 depicts the distribution of total SoVI scores across the country. The total 

SoVI scores were calculated by summing all principal components. The most vulnerable places are located in the eastern 

region and western Terai region of Nepal. Aksha et. al (2019) and Gautam (2017) also found a similar vulnerability in their 

respective studies. Despite having similar geophysical characteristics (same ecological region), they exhibit differences in 
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social vulnerability. However, Aksha et. al (2019) classified Kathmandu valley as a high vulnerability class, while Gautam 305 

(2017) classified it as very low class. Our result agreed with the latter case. This variability in the result is due to differences 

in variables during the analysis. The geographic distribution of each sub-component is demonstrated in Figure 8. Highly 

vulnerable areas under the housing unit category are concentrated in the Western Hill and Eastern Terai regions. The population 

component exhibits a high level of vulnerability in Kathmandu, Butwal, and some parts of the Far-Western region. Under 

health component, there is an intense degree of vulnerability in the Terai region and the Northern part or Mountain parts of the 310 

Far-Western region. Similarly, the component, education, reveals great vulnerability in the Eastern Terai region. The final 

component economy shows a very high degree of vulnerability in the mid part of the Far-Western region and Terai region. 

One of the major takeaways of this study is that areas with the same geophysical features may demonstrate different levels of 

social vulnerability. Significant differences are observed among three regions eastern Terai, Mountain, and Western Hills. The 

least vulnerable areas are the central and eastern Hill regions. A high level of vulnerability is concentrated in the areas with 315 

dense populations of minorities, regions with limited access to infrastructures and important facilities. 
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Figure 7: Spatial distribution of Social Vulnerability Index in districts of Nepal.  

 320 

 
Figure 8: Spatial distribution of social vulnerability of sub-categories 

4.2 Seismic Risk Assessment 

The seismic risk assessment at the bedrock level for 2% and 10% of probability of exceedance in 50 years has been evaluated 

in this study. Like SoVI, AAL (average annual loss) index obtained from the risk analysis is also classified into five quintiles 325 

from very low (< -1.5 standard deviation) to very high (> 1.5 standard deviations) vulnerability. Figure 9 shows the distribution 

of AAL per capita in monetary terms and Figure 10 shows the distribution of AAL index across the country. It is observed that 

the Terai region, especially the western one has a higher seismic risk. Kathmandu Valley also lies in a very high-risk category. 

Contrary to social vulnerability, the western part of Nepal lies in the lower AAL value region. Chaulagain et al. (2015) also 

showed a similar result in their probabilistic seismic risk study. 330 
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Figure 9: Average Annual Loss per capita, as calculated from OpenQuake, for Nepal. 
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Figure 10: Spatial distribution of Average Annual Loss Index in Nepal. 

4.3 Integrated risk assessment 335 

Social vulnerability shows the intensity of impact for any disaster. When combined with the impact of seismic action, the true 

nature of the distribution of seismic risk becomes evident. As shown in Figure 11, the integrated risk is higher in the Terai 

region. Kathmandu region has a low SoVI index, but a high integrated risk index. Similarly, the western hills and mountain 

regions are found to be in the low risky region, even though they have a high SoVI index. However, due to their high social 

vulnerability, these regions should still be depicted as a concern. Despite having a low number of houses, the houses may be 340 

of lower quality, which is inclined to suffer damage to even low-magnitude earthquakes, and these regions may not have 

enough resources for mitigation measures. On top of that, even though they are in a low seismic risk region, the respective 

population may be at high risk to other disasters like a landslide, flood, glacier, and other weather conditions (Burton and Silva, 

2016). 
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 345 
Figure 11: Spatial distribution of Integrated Risk Index in districts of Nepal. 

4 Conclusion 

The impacts of earthquakes cannot be defined only from the potential damages from them. Such effect also depends on the 

capacity of society to address and rebound from damage. Social vulnerability index depicts how society will prepare and 

respond to any disaster, while seismic risk index (AAL) shows how society will get affected due to earthquakes.  This paper 350 

presents a method using SPSS and OpenQuake to delineate integrated seismic risk for Nepal. The integration of seismic risk 

with social characteristics inhibits a different outlook on seismic risk mitigation and planning, as described below: 

• It combines the loss and damage (effects of earthquakes) with social characteristics such as health, poverty, education 

and economy (how society responds to earthquakes).  

• It helps clearing up the confusion on whether to focus on loss and damage, or the population that are least likely to 355 

be able to recover from losses. For example, if only social vulnerability index is considered, western hills and 

mountain region seems more vulnerable than Kathmandu Valley, while considering seismic risk index, Kathmandu 
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Valley is more vulnerable. Only on integrating, we can confirm that Kathmandu Valley is more vulnerable to 

earthquakes and need more attention than western Hills and mountain region.   

• The findings reinforce the concept in the hazards and vulnerability field that analysis of socio-demographic 360 

characteristics, when taken into account along with the physical environment, brings a greater understanding of the 

potential impacts of hazards.  

• Additionally, this study provides a method for local policymakers to integrate knowledge about the physical 

environment, social, and demographic composition of their region to assess their natural hazards mitigation, using a 

standardized tool like OpenQuake before an event occurs. 365 

SIn this study, we assess social vulnerability characteristics to potential risks from a large earthquake on seismically active 

zones across the country. Since local level policymakers and municipalities have big responsibility to minimize, prepare, and 

respond to hazards and their impacts, a proper understanding of the social vulnerability is crucial to alleviate the risks caused 

by earthquakes. The distribution of potential seismic hazard-related losses across the country can be partially explained by the 

region’s ethnicity, income, and renter population. Although previous studies have also identified the integration or relationship 370 

between natural disasters and vulnerability features, this research extended the applicability of social vulnerability by 

integrating it with earthquake risk estimates.  

The authors are aware to the fact numerous estimations such as casualties, non-structural damage, business-interruption loss, 

and loss to critical infrastructure may improve the indicator of physical risk. However, only economic losses to buildings are 

utilized at this stage as an initiation for this type of research for Nepal. Moreover, a more recent data for SoVI will depict more 375 

exact status of society and its vulnerability to disaster. However, census is done every 10 years in Nepal, and the most recent 

census was held in 2011. More recent data can be used in the future study, once Nepal census 2021 is completed and published.  
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